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Partial factorization of wave functions for a quantum dissipative system
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In this paper, a microscopic approach treating the quantum dissipation process presented by Yu and Sun
@Phys. Rev. A49, 592 ~1994!; 51, 1845 ~1995!# is developed to analyze the wave function structure for the
dynamic evolution of a typical dissipative system—a single-mode boson soaked in a bath of many bosons. The
wave function of the total system is explicitly obtained as a product of two components of the system and bath
in a coherent state representation. It not only describes the influence of the bath on the variable of the system
through the Brownian motion, but also manifests the back-action of the system on the bath and the mutual
interaction among the bosons of bath. Due to the back-action, the total wave function can only be partially
factorizable even if the Brownian motion can be completely ignored in certain cases, e.g., weak coupling and
large detuning. The semiclassical implication of the back-action, the mutual interaction, and the Brownian
motion in the present model are also discussed by considering the wave packet evolution of the dissipative
system in the coordinate representation.@S1063-651X~98!04604-2#

PACS number~s!: 05.30.2d, 03.65.2w, 32.80.2t, 42.50.2p
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I. INTRODUCTION

Historically, there are two different approaches to tre
the quantum dissipative process, i.e., the system plus
model in much of the literature@1–4#, and the time depen
dent effective Hamiltonian model given by Kanai and Ca
irola @5,6#. However, for quite a long time the problem of th
relation between these two approaches, frequently appea
in the literature, has remained untouched. In two recent
pers by Yu and one~C.P.S.! of the authors@7,8#, based on
the first approach, this problem was tackled by explici
writing down the total wave function of the system plus t
bath in a form of a product of the bath and system com
nents. With this result the relation between the above m
tioned approaches was clarified as that the product of
bath and system components becomes a direct product w
the Brownian motion effects can be ignored in certain ca
It was also shown that the system component is gover
just by the Kanai and Caldirola effective Hamiltonian in th
situation.

However, two questions about the discussions in R
@7,8# have to be answered. The first one concerns the
that, as the mixed variables involving the physical coor
nates of the system were chosen to describe the bath in
previous discussion, the wave function only manifested
influence of the bath on the system through the Brown
broadening of the width of the wave function for the syste
Here we left the back-action of the system on the bath
discussed. If there indeed exists a back-action of the sys
on the bath, it is reasonable to expect that, for individ
571063-651X/98/57~4!/3900~5!/$15.00
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particles comprising the bath, the mutual couplings amo
them should indirectly appear through coupling the syst
as an intermediate process. The second question involve
relation between quantum and classical systems. In m
real situations, the classical or macroscopic states can
represented by coherent states in quantum optics and ma
scopic quantum phenomena. Under the influence of the b
it is significant to study how the system evolves with
initial coherent state, and to test if it can move in classi
orbits

In this paper, we intend to consider the above two qu
tions. In the rotating-wave approximation@9#, a simple
model of one boson interacting with a bath of many boso
is used to analyze the back-action of the system on the
and the mutual couplings among the particles comprising
bath. In the presence of the back-action and indirect mu
coupling, the meaning of the wave function of the dissipat
system is clarified by considering the dynamic evolution
the total system. A significantly different result from prev
ous works@7,8# is the partial factorization structure, in whic
the total wave function is still a product of the system a
bath components, but the coordinate of each individual p
ticle in the bath component is entangled with the coordina
of the system and other bath particles. For instance, in
limit case with a very large width of the initial state an
weak coupling or large detuning, the entanglement terms
the bath variables in the system component can be igno
up to the second order approximation, and the Brownian m
tion plays no role in the evolution of the system. However,
this case, the total wave function can only be partially fa
3900 © 1998 The American Physical Society
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torized, because there still exist entanglement terms of
system variable in each bath component of the total w
function. It is also shown that, in this sense, the system c
ponent is only a function of the system variable governed
an effective Hamiltonian, which is equivalent to th
Caldirola-Kanai Hamiltonian. With the Gaussian wa
packet as an initial state of the system, the evolution of
wave packet can be explicitly calculated to mainifest
semiclassical features of the back-action and the mutua
teraction.

The paper is organized into five sections. In Sec. II,
explicit expression for the total wave function is construc
in a coherent representation. In Sec. III, the physical mean
of the partial factorization of the wave function is discuss
by deriving the Kanai and Caldirola effective Hamiltonia
governing the system component. In Sec. IV, the semicla
cal implications of the back-action and the mutual inter
tion, as well as the Brownian motion, are analyzed, with
wave packet evolution as an example.

II. STRUCTURE OF THE WAVE FUNCTION

In this section, we construct a partially factorized wa
function for the system plus bath from the explicit solutio
of the Heisenberg equations about the system operator
bath operators. Consider a simple model consisting o
single-mode boson and a bath of many bosons. The Ha
tonian is written as

H5\vb†b1(
j

\v jaj
†aj1\(

j
@j jb

†aj1H.c.#, ~1!

wherej j5uj j ueis j ’s are the complex coupling constants a
b†, b;aj

† , and aj are the bosonic creation and annihilatio
operators for the system and bath, respectively. This mo
can be regarded as a rotating-wave approximation of
original oscillator model@7,8#, with the linear coupling
( jj jqxj;( j@j jb

†aj1j jb
†aj

†1H.c# of the system coordi-
nateq to the bath variablesxj .

To obtain an explicit expression for the wave function
the total system formed by the system plus the bath,
invoke the well-known solutions given by Ref.@9#,

b~ t !5u~ t !b~0!1(
j

y j~ t !aj~0!, ~2!

aj~ t !5e2 iv j taj~0!1uj~ t !b~0!1 (
s~Þ j !

y js~ t !as~0!, ~3!

of the corresponding Heisenberg equation. Here, the ti
dependent coefficients are

u~ t !5expF2
g

2
t2 i ~v1Dv!t G , ~4!

y j~ t !52j jexp~2 iv j t !
12exp@ i ~v j2v2Dv!t2gt/2#

v1Dv2v j2 ig/2
,

~5!

uj~ t !52j j* e2 iv j t
exp@ i ~v j2v2Dv!t2gt/2#21

v j2v2Dv1 ig/2
, ~6!
e
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y js~ t !5
2j j* jse

2 iv j t

v1Dv2vs2 ig/2

3H 12exp@ i ~v j2v2Dv!t2gt/2#

v1Dv2v j2 ig/2
2LJ , ~7!

L5H exp@ i ~v j2vs!t#

v j2vs
, j Þs

t, j 5s .

~8!

Here the Lamb shiftDv can be absorbed intov to obtain the
renormalized physical frequencyṽ5v1Dv, and the damp-
ing constantg is determined by the couplingj jand the spec-
trum densityr(v j ) of the bath. If we chose an appropria
r(v j ) similar to the Ohmic distribution of Caldeira and Leg
gett @1#, the above solutions~2! and~3! are exact@7,8#; oth-
erwise, the similar solution can be obtained by the Wign
Weisskopf approach or the Markoff approximation@9#.

Now we present a method in the coherent state repre
tation to calculate the evolution of the wave function in t
Schrödinger picture from explicit expressions of the cano
cal operators in the Heisenberg picture. It is different fro
that in our previous works@1,2#, but quite direct and effec-
tive. If the initial state of the total system is a direct produ
uC(0)&5uf& ^ ) j uf j&, andU(t) is the evolution operator o
the total system, the wave functionuC(t)&5U(t)uC(0)& at
time t can be defined by its coherent state representation

C~l,$l j%,t !5^l,$l j%uC~ t !&5^C~0!uU~ t !†ul,$l j%&* .
~9!

Here, the overcomplete basis

ul,$l j%&5ul& ^)
j

ul j&

5N~l,$l j%!expS lb†~0!1(
j

l jaj
†~0! D u0& ~10!

has been constructed from the coherent statesul& and ul j&
for the annihilation operatorsb(0) and aj (0), respec-

tively. The normalization constantN(l,$l j%) 5exp(2 1
2ulu2

2(j
1
2ulju2). To obtain explicit expressions ofU(t)ul,$l j%&,

we consider the role of the evolution matrixU(t) in the
Heisenberg picture. In fact, sinceU(t)†O(0)U(t)5O(t)
andU(t)u0&5u0& for an operatorO, it is easy to obtain

U~ t !†ul,$l j%&

5N~l,$l j%!expS lb†~ t !1(
j

l jaj
†~ t ! D u0&

5N~l,$l j%!expS a~ t !b†~0!1(
j

b j~ t !aj
†~0! D u0&

5ua~ t !& ^)
j

ub j~ t !&, ~11!

where
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a~ t !5u~ t !* l1(
j

l juj~ t !* , ~12!

b j~ t !5eiv j tl j1v j~ t !* l1 (
s~Þ j !

vs, j~ t !* ls . ~13!

By substituting Eq.~11! into Eq. ~9!, a formal factorized
wave function for the total system

C~l,$l j%,t !5fS u~ t !* l1(
j

uj~ t !* l j D ^)
j

f j S eiv j tl j

1v j~ t !* l1 (
s~Þ j !

vs, j~ t !* lsD ~14!

is obtained.

III. PARTIAL FACTORIZATION AND EFFECTIVE
HAMILTONIAN

In this section we derive the effective Hamiltonian go
erning the evolution of the system componentf if the
Brownian effect caused by the terms( juj (t)* l j can be ig-
nored, and then the total wave functionC is partially factor-
ized. The above wave function~14! is not completely factor-
izable because of the entanglements of the variablesl and
l j , which are implied by the term( juj (t)* l j of the bath
variablesl j modifying the system variablel, and the term
v j (t)* l of the system modifying the bath variablesl j . This
former represents the bath fluctuation due to the Brown
motion, and the latter the back-action of the system on
bath. In fact the term( juj (t)* l j is caused by the bath fluc
tuation operatorB(t)5( jy j (t)aj (0) in the system operato
b(t). The bath fluctuation operator has a zero thermal av
age, but a nonzero correlation

^B~ t !†B~ t8!&5(
j

4uj j u2
f j~ t,t8!

g214~v j2v2Dv!2

3FexpS \v j

kBTD21G21

. ~15!

where f j (t,t8) can be well defined by Eq.~5!. The term
( j Þsvs, j (t)* ls shows the mutual interactions among t
bosons of the bath through the system. Mathematically, if
coupling is weak with a small value ofj j , the mutual inter-
actions are second order quantities, sincevs, j (t)* }j j* js .
Notice that the main difference between the present re
and that in Refs.@7,8# is the back-action and the mutu
interactions.

If the fluctuation can be ignored for certain cases, e.gl
is very large in the initial state and the coupling is we
enough, the entanglement disappears, so that the wave
tion becomes a product

C~l,$l j%,t !'f@u~ t !* l# )
j 51

N

f j@eiv j tl j1v j~ t !* l#.

~16!

In this case, all influences of the bath on the system
represented by the damping constantg, and then the wave
function is partially factorizable due to the termv j (t)* l. It
n
e

r-

e

lt

nc-

re

is not difficult to prove that the system compone
f@u(t)* l# is governed by an effective Hamiltonian which
also equivalent to the Caldirola-Kanai Hamiltonian.

To prove this, we need to return into the Heisenberg p
ture by dropping the bath operatorsaj (0) in b(t), that is,
b(t) is replaced byb̃(t) 5u(t)b(0). However, b̃(t)† and
b̃(t) are not canonical operators, since@ b̃(t), b̃(t)†#5e2gt.
Fortunately, the Bogoliubov transformation gives the gene
canonical operators

A~ t !5a b̃~ t !1b b̃~ t !† ~17!

satisfying@A(t),A(t)†#51, where

uau22ubu25exp~gt !. ~18!

To give the correct Heisenberg equations for operatorsA(t)
andA(t)† , the effective Hamiltonian is determined by de
nition ~17! to be time dependent,

Heff5 i\ exp~2gt !~ āa* 2b̄b* !A~ t !†A~ t !

1 1
2 ~ b̄a2āb!A~ t !†A~ t !†

1 1
2 ~ ā* b* 2b̄* a* !A~ t !A~ t !, ~19!

whereā5ȧ2(g/21 i ṽ)a and b̄5ḃ2(g/22 i ṽ)b. Notice
that the numberāa* 2b̄b* 5d should be a pure imaginar
number, i.e.,d* 52d. Here we should mention that the e
fective Hamiltonian is not unique because there is only o
constraint@Eq. ~18!# @10#. The different forms of the effec-
tive Hamiltonian correspond to the different realizations
the canonical variables. For instance, a specific solution

a5exp~g/21 iw!t, b50,w5ṽ2Ag2/41ṽ2

of Eq. ~18! gives

Heff5\ exp~gt !VA~ t !†A~ t !,

with V5Ag2/41ṽ2. By formally introducing the canonica
coordinate Q5A\/2MV@A(t)1A(t)†# and momentum

P52 iAMV\/2@A(t)2A(t)†#, with the varying mass
M5m exp(gt), this special effective Hamiltonian is just o
the form given by Caldirola and Kanai. The same result c
be also obtained in a purely quantized version in the Sch¨-
dinger picture by a direct calculation of matrix elements,

^auHeffub&5^au i\@]U~ t !/]t#U~ t !†ub&.

IV. MOTION OF THE CENTER OF THE WAVE PACKET
WITH QUANTUM FLUCTUATION

In this section, we consider the classical counterpart of
factorization structure of a wave function, entangling a s
tem variable with the bath variables. In the representation
the coordinate momentum determined by



s-

d-

av

e
in
rs
ts
q
i-

he

l
r-

em
ath
or
of

tion

g
the

p-
issi-

is
p-
p-
ly

ical
his
ple
an-
rns

tion,
and
the

y
er.
ener-
e

ro-
hey
in

nd-
te

57 3903PARTIAL FACTORIZATION OF WAVE FUNCTIONS FOR . . .
q5A \

2v
~b1b†!, p52 iA\v

2
~b2b†!, ~20!

xj5A \

2v j
~aj1aj

†!, pj52 iA\v j

2
~aj2aj

†!, ~21!

the coherent statesul& and ul j& are understood to be Gaus
ian wave packets of widthsA\/2v centered in
q05A\/2v(l1l* ) and xj 05A\/2v(l j1l j* ), respec-
tively. If the initial state of the total system is a direct pro
uct of such Gaussians,

uC~0!&5Ul5A v

2\
q0L ^)

j
Ul j5Av j

2\
xj 0L , ~22!

the wave function at timet,

uC~ t !&5ul~ t !& ^)
j

ul j~ t !&

5Uu~ t !A v

2\
q01(

j
uj~ t !Av j

2\
xj 0L

^)
j
UAv j

2\
xj 0eiv j t

1v j~ t !A v

2\
q01 (

j ~Þs!
vs, j~ t !Avs

2\
xs0L ,

~23!

defines the position evolution of center of the Gaussian w
packet,

qc~ t !5A \

2v
@l~ t !1l* ~ t !#5q0expS 2

1

2
gt D cos~ṽ !t

1(
j

uj j uAv j

v

xj 0Q j~ t !

g2/41~v j2ṽ !2
, ~24!

where

Q j~ t !5expS 2
1

2
gt D Fg2sin~ṽ1s j !t1~v j2ṽ !

3cos~ṽ1s j !t G2Fg2sin~v j1s j !t1~v j2ṽ !

3cos~v j1s j !t G . ~25!

It is known from Eq.~24! that the center of the wav
packet moves along the classical trajectory of a damp
harmonic oscillator. This motion is described by the fi
term in Eq.~24!, and perturbed by the initial displacemen
xj 0 of the bath oscillators shown in the second term in E
~24!. This fluctuation effect is nothing but an explicit man
festation of the Brownian motion. If initial displacementq0
is very large, this fluctuation effect can be ignored in t
e

g
t

.

weak coupling case with smallj j , or in a sharp spectra
distribution of the bath with a large detuning from the reno
malized frequencyṽ.

It is interesting to consider the back-action of the syst
on the bath, and the mutual interaction among the b
bosons in the problem of the wave packet evolution. F
each boson in the bath, the motion law of the center
Gaussian wave packet,

xjc~ t !5A \

2v j
@l j~ t !1l j* ~ t !#5xj 0cosv j t

1q0Av

v j
Re@v j~ t !#1 (

s~Þ j !
Re@vs, j~ t !#Avs

v j
xs0 ,

~26!

is given by the second component in Eq.~23!. The back-
action q0Av/v jRe@v j (t)# is proportional to the initial dis-
placementq0 and a Lorentzian factor}@g2/41(v j2ṽ)2#21

given by Eq.~5!. It cannot be neglected for largeq0, or in the
near-resonance case in which the bath spectral distribu
r(v j ) peaks in the renormalized frequencyṽ of the system.
However, the last term(s(Þ j )Re@vs, j (t)#Avs /v j xs0 is of
second order. It explicitly reflects the mutual couplin
among the bosons of the bath, and can be neglected in
first order approximation.

V. DISCUSSIONS

In summary, we should mention that the Langevin a
proach serves as a standard treatment of the quantum d
pation process for the present model@2#, but hardly concerns
discussions about the structure of wave function, which
essentially important in zero temperature; the Markoff a
proximation is an effective method to treat the density o
erator related essentially to the wave function, but it on
considers a few intuitional pictures based on the class
correspondence and the dissipation-fluctuation relation. T
paper takes both aspects into account for the most sim
model, and thus gives a direct and clean picture of the qu
tum dissipation process. This discussion not only conce
the necessary details in the dynamics of quantum dissipa
but also reveals the roles of the back-action of the bath
the mutual coupling among bosons in the bath. In fact,
Langevin approach is based on a stochastic equation,

ḃ~ t !5F2
g

2
2 i ~va1Dv!Gb~ t !1F~ t !, ~27!

with the stochastic forceF(t)52 i ( jj jaj (0)e2 iv j t. Its ex-
plicit solution is the starting point for finding the partiall
factorizable wave function of the total system in this pap
In this sense, the present study can be regarded as a g
alization of quantum Langevin theory. From a view of th
Markoff approximation theory, our explicit solutions~14!
and ~23! can be somewhat understood as the ze
temperature results of the density matrix approach, but t
deal substantially with the dissipation-fluctuation relation
the framework of the wave function. Instead of understa
ing the effective wave function in terms of the comple



ur
ri-
e

nd
tu

at

th

-
ic
te

of
enta-
per
still

e
e
s

of

3904 57C. P. SUN, Y. B. GAO, H. F. DONG, AND S. R. ZHAO
factorization structure, as in previous works@7,8#, another
emphasis of this paper is the partially factorizable struct
of the evolution wave function. This structure further cla
fies the meaning of the wave function governed by the tim
dependent effective Hamiltonian given by Caldirola a
Kanai in the presence of the back-action and indirect mu
interactions.

To conclude this paper, it is worthwhile to point out th
the methods used here and in previous works@7,8# are only
limited to linear systems such as the harmonic oscillator,
inverse harmonic oscillator~the harmonic oscillator with an
image frequencyv→ iv), and a linear potential for a con
stant force. For these systems, the solutions of canon
Heisenberg operators are linear combinations of the sys
e

-

al

e

al
m

variable and the bath variables. Thus the wave functions
these systems are factorizable in the appropriate repres
tions. The generalization of the idea and method of this pa
to the nonlinear cases, except for linearizable systems, is
an open question.
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