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In this paper, a microscopic approach treating the quantum dissipation process presented by Yu and Sun
[Phys. Rev. A49, 592 (1994; 51, 1845(1999] is developed to analyze the wave function structure for the
dynamic evolution of a typical dissipative system—a single-mode boson soaked in a bath of many bosons. The
wave function of the total system is explicitly obtained as a product of two components of the system and bath
in a coherent state representation. It not only describes the influence of the bath on the variable of the system
through the Brownian motion, but also manifests the back-action of the system on the bath and the mutual
interaction among the bosons of bath. Due to the back-action, the total wave function can only be partially
factorizable even if the Brownian motion can be completely ignored in certain cases, e.g., weak coupling and
large detuning. The semiclassical implication of the back-action, the mutual interaction, and the Brownian
motion in the present model are also discussed by considering the wave packet evolution of the dissipative
system in the coordinate representati®i1063-651X98)04604-3

PACS numbg(s): 05.30—d, 03.65-w, 32.80—t, 42.50—p

[. INTRODUCTION particles comprising the bath, the mutual couplings among
them should indirectly appear through coupling the system
Historically, there are two different approaches to treatas an intermediate process. The second question involves the
the quantum dissipative process, i.e., the system plus batelation between quantum and classical systems. In many
model in much of the literaturfl—4], and the time depen- real situations, the classical or macroscopic states can be
dent effective Hamiltonian model given by Kanai and Cald-represented by coherent states in quantum optics and macro-
irola[5,6]. However, for quite a long time the problem of the scopic quantum phenomena. Under the influence of the bath,
relation between these two approaches, frequently appearingis significant to study how the system evolves with an
in the literature, has remained untouched. In two recent panitial coherent state, and to test if it can move in classical
pers by Yu and onéC.P.S) of the authord7,8], based on orbits
the first approach, this problem was tackled by explicitly In this paper, we intend to consider the above two ques-
writing down the total wave function of the system plus thetions. In the rotating-wave approximatiof®], a simple
bath in a form of a product of the bath and system compomodel of one boson interacting with a bath of many bosons
nents. With this result the relation between the above menis used to analyze the back-action of the system on the bath
tioned approaches was clarified as that the product of thand the mutual couplings among the particles comprising the
bath and system components becomes a direct product whéath. In the presence of the back-action and indirect mutual
the Brownian motion effects can be ignored in certain casecoupling, the meaning of the wave function of the dissipative
It was also shown that the system component is governeslystem is clarified by considering the dynamic evolution of
just by the Kanai and Caldirola effective Hamiltonian in this the total system. A significantly different result from previ-
situation. ous workg7,8] is the partial factorization structure, in which
However, two questions about the discussions in Refsthe total wave function is still a product of the system and
[7,8] have to be answered. The first one concerns the fadtath components, but the coordinate of each individual par-
that, as the mixed variables involving the physical coordi-ticle in the bath component is entangled with the coordinates
nates of the system were chosen to describe the bath in thed the system and other bath particles. For instance, in the
previous discussion, the wave function only manifested thdéimit case with a very large width of the initial state and
influence of the bath on the system through the Browniarweak coupling or large detuning, the entanglement terms of
broadening of the width of the wave function for the system.the bath variables in the system component can be ignored
Here we left the back-action of the system on the bath unup to the second order approximation, and the Brownian mo-
discussed. If there indeed exists a back-action of the systetion plays no role in the evolution of the system. However, in
on the bath, it is reasonable to expect that, for individuakthis case, the total wave function can only be partially fac-
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torized, because there still exist entanglement terms of the -& el
system variable in each bath component of the total wave  vjs(t)=
function. It is also shown that, in this sense, the system com-

ponent is only a function of the system variable governed by 1-exdi(wj— 0—Aw)t—yt/2]

ot+Aw—w—iy/2

an effective Hamiltonian, which is equivalent to the P pa—— , (D
Caldirola-Kanai Hamiltonian. With the Gaussian wave J

packet as an initial state of the system, the evolution of the .

wave packet can be explicitly calculated to mainifest the M j#s
semiclassical features of the back-action and the mutual in- A= W~ Wg ’ (8
teraction. t, j=s.

The paper is organized into five sections. In Sec. Il, the
explicit expression for the total wave function is constructedyere the Lamb shiff  can be absorbed into to obtain the

in a coherent representation. In Sec. lll, the physical meaninpenormalized physical frequendy= o+ Aw, and the damp-

of the partial factorization of the wave function is discussed : : .
e ) . X -~ 7Ing constanty is determined by the couplingand the spec-
by deriving the Kanai and Caldirola effective Hamiltonian trum densityp(w;) of the bath. If we chose an appropriate

governing the system component. In Sec. IV, the semiclassi- - e .
cal implications of the back-action and the mutual interac-p(wi) similar to the Ohmic distribution of Caldeira and Leg-

. ) X . ett[1], the above solution&2) and(3) are exac{7,8]; oth-
tion, as well as the Brownian motion, are analyzed, with thegrwise, the similar solution can be obtained by the Wigner-
wave packet evolution as an example.

Weisskopf approach or the Markoff approximatic.
Now we present a method in the coherent state represen-
Il. STRUCTURE OF THE WAVE FUNCTION tation to calculate the evolution of the wave function in the

In this section, we construct a partially factorized waveSchralinger picture from explicit expressions of the canoni-
function for the system plus bath from the explicit solutionsC@l operators in the Heisenberg picture. It is different from
of the Heisenberg equations about the system operator afat in our previous work$l,2], but quite direct and effec-

single-mode boson and a bath of many bosons. The Hamil-¥ (0))=|¢)®11;|¢;), andU(t) is the evolution operator of
tonian is written as the total system, the wave functi¢f (t))=U(t)|¥(0)) at

timet can be defined by its coherent state representation

HZﬁwab-i-; ﬁwjajTaj-i-ﬁE [fijaj-i-H.C.], (D) ‘I’()\,{)\j},t):<)\,{)\j}|\1’(t)>=<‘P(O)|U(I)T|)\,{)\j}>*.
(9

where§»=|§j|e“’i’s are the complex coupling constants and

b, b;ajJr, anda; are the bosonic creation and annihilation

operators for the system and bath, respectively. This model

can be regarded as a rotating-wave approximation of thg\,{)\j}>:|)\>®1—[ |)\j>

original oscillator model[7,8], with the linear coupling i

3i&ax~3[£bTa;+ & b"a +H.c] of the system coordi-

nateq to the bath variables; . ZN()\,{)\j})eXp()\bT(O)JFZ AjajT(O) 10y (10
To obtain an explicit expression for the wave function of ]

the total system formed by the system plus the bath, we

Here, the overcomplete basis

invoke the well-known solutions given by Ré¢8], has been constructed from the coherent stit¢sand |)\j>
for the annihilation operatord(0) and a;(0), respec-

. . . ) — 1 2

b(t)=u(t)b(0)+; v(H)a;(0), @) tively. The normalization constam(\,{\;}) =exp(—3|\|

—3;3\/3). To obtain explicit expressions df (t)[\,{\;}),

we consider the role of the evolution matrix(t) in the
a(t)=e " 9ta (0)+u.(t)b(0)+ _(H)a0), (3 Heisenberg picture. In fact, sincd(t)TO(0)U(t)=0(t)
i i(0)+;(1)b(0) s(gj) us(3(0), () andU(t)|0)=|0) for an operato, it is easy to obtain

of the corresponding Heisenberg equation. Here, the timeU(t)TD\ b
dependent coefficients are T

=N\, AbT(t N:al(t)]]o
u(t)=ex;{—%t—i(w+Aw)t, (4) O J})eXp( (”E,-: 3010
o l-exfi(w— 0—Aw)t—yt/2] :N(N{M})exp(a“)bT(OHE Bi(H)af(0)||0)
v =~ gexp—io) otAw—o;—iy2 ’ J
® =la)e ] 18, (1)

exfi(oj—w—Aw)t—yt/2]-1
—w—Aw+iyl2

. — _ ¢x a—iojt
uj()=—¢je ; » 6 where



3902 C. P. SUN, Y. B. GAO, H. F. DONG, AND S. R. ZHAO 57
is not difficult to prove that the system component
a()=u()* A+ Auj()*, (120 ¢[u(t)*\] is governed by an effective Hamiltonian which is

' also equivalent to the Caldirola-Kanai Hamiltonian.

_ To prove this, we need to return into the Heisenberg pic-

Bi(t)=e"“i'\j+v;()* N+ E vsj()*As. (13)  ture by dropping the bath operatoag(0) in b(t), that is,

) b(t) is replaced byb(t) =u(t)b(0). However,b(t)" and

By substituting Eq.(11) into Eq. (9), a formal factorized (t) are not canonical operators, sirfde(t),b(t)']=e .
wave function for the total system Fortunately, the Bogoliubov transformation gives the general

canonical operators
® H ¢J ( ei wjt)\j

TN D=6 u(t)*)\-l—; U (0)* A |

A(t)=ab(t)+8b(1)" (17)

*Ui“)*“%) vsi(D s 19 atisfying[A(t),A(t) ']=1, where
is obtained. |a|2— |,8|2=6X[X ). (18)
Nl PARTIAL FACL?AI:/:ﬁ_ﬁg(N):\ASND EFFECTIVE To give the correct Heisenberg equations for operaddi3

andA(t)", the effective Hamiltonian is determined by defi-
In this section we derive the effective Hamiltonian gov- nition (17) to be time dependent,
erning the evolution of the system componafitif the

Brownian effect caused by the termsu;(t)* \; can be ig- _ _ T % ook t

nored, and then the total wave funcrﬁt?m{is parjtially factor- Her =17t exp(—yt)(aa”™ = SET)ALTA(L)

ized. The above wave functiqi4) is not completely factor- +i(Ba—aB)A)TAMD)T

izable because of the entanglements of the variablesd . .

\j, which are implied by the ternx;u;(t)*\; of the bath +1(a* B* — B* a*)A(DA(L), (19

variables\; modifying the system variablg, and the term

vj(t)*\ of the system modifying the bath variabbes. This - g A n_ i ;
former represents the bath fluctuation due to the Browniar\{:]heria “ b()iz*m)_a*a_n?sﬂh ,BId(g/Z Iw)'B: Not!ce
motion, and the latter the back-action of the system on thdhat the numbeeo™ — 8" = 5 should be a pure imaginary

bath. In fact the ternk;u;(t)*\; is caused by the bath fluc- ?umberl,_li.e.l,lé* T 5 Here we Sh%UId mentir?n thgt th? ef-
tuation operatoB(t) = 3 v;(t)a;(0) in the system operator ective Hamiltonian is not unique because there is only one

b(t). The bath fluctuation operator has a zero thermal aver(_:onstraint[Eq. (18] [10]. The different forms of the effec-
age, but a nonzero correlation tive Hamiltonian correspond to the different realizations of

the canonical variables. For instance, a specific solution
fi(t,t")
1 N — 12 I\ . _~ =
(BB, 2 44 '}/2+4(wj—w—Aw)2 a=exp(y2+ie)t, B=0p=w— ¥4+’

-1 i
exp(ﬁ _1} . (15) of Eq. (18) gives
kgT

where f;(t,t") can be well defined by Eq5). The term
2j+Usj(t)*Ng shows the mutual interactions among the _
bosons of the bath through the system. Mathematically, if thevith Q= ' y?/4+ w?. By formally introducing the canonical
coupling is weak with a small value @&, the mutual inter- coordinate Q= \A2MQ[A(t)+A(t)'"] and momentum
actions are second order quantities, simeg(t)* =& és.  p=—i JMQA/Z[A(t)—A(t)'], with the varying mass
Notice that the main difference between the present resufj=m exp(t), this special effective Hamiltonian is just of
and that in Refs[7,8] is the back-action and the mutual the form given by Caldirola and Kanai. The same result can
Interactions. be also obtained in a purely quantized version in the Schro

~ Ifthe fluctuation can be ignored for certain cases, &.g., dinger picture by a direct calculation of matrix elements,
is very large in the initial state and the coupling is weak

enough, the entanglement disappears, so that the wave func-
tion becomes a product

X

Her=% exp(yt) QA1) TA(L),

(a|Herl B)={alih[ JU(1)/at]U(1)T| B).

N
TN D~ Sl ult)* ) ey 4 p (15T, IV. MOTION OF THE CENTER OF THE WAVE PACKET
MAE D~ ¢lu) ],-Hl all iTviUA] WITH QUANTUM FLUCTUATION

(16) In this section, we consider the classical counterpart of the
In this case, all influences of the bath on the system aréactorization structure of a wave function, entangling a sys-
represented by the damping constantand then the wave tem variable with the bath variables. In the representation of
function is partially factorizable due to the tewm(t)*\. It ~ the coordinate momentum determined by
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% ho weak coupling case with smallj, or in a sharp spectral
= V3,0t b"), p=-i — (b b"), (200 distribution of the bath with a large detuning from the renor-
malized frequency.

7 P It is interesting to consider the back-action of the system
X;= \/_(ajjuaj‘r), pj=—i \/_J(aj_aj‘r), (21  on the bath, and the mutual interaction among the bath
2w 2 bosons in the problem of the wave packet evolution. For

each boson in the bath, the motion law of the center of
the coherent statda) and|\;) are understood to be Gauss- gayssian wave packet,

ian wave packets of widthsA/20 centered in

do=VAlRo(N+\*) and Xjo=\h/2w(N\;+\]), respec- f

tively. If the initial state of the total system is a direct prod- Xjc(t)= \/5—{Nj(t) +\] (1) ]=Xjoc0m0;t
uct of such Gaussians,

” v +QO\/7R€[U W1+ 3, Reosy 01\ 3,
|W(0))= A= 5790 A= 27,Xi0/ (22

(26)
the wave function at time, is given by the second component in Eg3). The back-
action govw/ w;Rev;(t)] is proportional to the initial dis-
w)y=n)eIl In ) placementy, and a Lorentzian factor[ y?/4+ (w;— w)?]*
j given by Eq.(5). It cannot be neglected for largg, or in the
" o near-resonance case in which the bath spectral distribution
=[u(t) \ /ﬁqo+2 u;(t) \ /jxjo> p(wj) peaks in the renormalized frequenoyof the system.
! However, the last ternE . Revs () ]Vos/wjXy is of
_ second order. It explicitly reflects the mutual coupling
®H \/ X]Oelwﬁ among the bosons of the bath, and can be neglected in the

first order approximation.

+u, (t)\/ o+ Z vs(t) xso>, V. DISCUSSIONS

In summary, we should mention that the Langevin ap-
proach serves as a standard treatment of the quantum dissi-
ation process for the present mofi&)], but hardly concerns
iscussions about the structure of wave function, which is
essentially important in zero temperature; the Markoff ap-

7 1 proximation is an effgctive method to treat Fhe dens_ity op-
9e(t) = /—[A(t)+)\*(t)]=q0exr< _ —yt)cos(a)t erator related essentially to the wave function, but it only
20 2 considers a few intuitional pictures based on the classical
correspondence and the dissipation-fluctuation relation. This

+E & \F

(23

defines the position evolution of center of the Gaussian Wavg
packet,

Xj00;(1) (24) paper takes both aspects into account for the most simple

2/4+(w —0)?’ model, and thus gives a direct and clean picture of the quan-

tum dissipation process. This discussion not only concerns

where the necessary details in the dynamics of quantum dissipation,
but also reveals the roles of the back-action of the bath and

1 the mutual coupling among bosons in the bath. In fact, the
Oj(t)=exp —51/|5 sm(w+ ot (0~ o) Langevin approach is based on a stochastic equation,
~ ~ . Y .
X COS @+ o))t || 2SiNw; + 7))+ (0~ ) b(t)=| ~ 2 ~i(watAw) b +F(D), (27

with the stochastic forc& (t) = —iEjgjaj(O)e“‘”it. Its ex-
plicit solution is the starting point for finding the partially
factorizable wave function of the total system in this paper.
It is known from Eq.(24) that the center of the wave In this sense, the present study can be regarded as a gener-
packet moves along the classical trajectory of a dampinglization of quantum Langevin theory. From a view of the
harmonic oscillator. This motion is described by the firstMarkoff approximation theory, our explicit solutiond4)
term in Eq.(24), and perturbed by the initial displacementsand (23) can be somewhat understood as the zero-
Xjo of the bath oscillators shown in the second term in Eqtemperature results of the density matrix approach, but they
(24). This fluctuation effect is nothing but an explicit mani- deal substantially with the dissipation-fluctuation relation in
festation of the Brownian motion. If initial displacemeny  the framework of the wave function. Instead of understand-
is very large, this fluctuation effect can be ignored in theing the effective wave function in terms of the complete

XCOSL{)]"‘O’])t . (25)
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factorization structure, as in previous workg 8], another variable and the bath variables. Thus the wave functions of
emphasis of this paper is the partially factorizable structurehese systems are factorizable in the appropriate representa-
of the evolution wave function. This structure further clari- tions. The generalization of the idea and method of this paper
fies the meaning of the wave function governed by the timeto the nonlinear cases, except for linearizable systems, is still
dependent effective Hamiltonian given by Caldirola andan open question.
Kanai in the presence of the back-action and indirect mutual
interactions.
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